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Ternary Complexes in Solution. Comparison of the Coordination
Tendency of Some Biologically Important Zwitterionic Buffers
toward the Binary Complexes of Some Transition Metal lons and

Some Amino Acids

Zeinab M. Anwar and Hassan A. Azab*

Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt

Potentiometric equilibrium measurements have been performed at (25.0 £+ 0.1) °C and ionic strength | =
0.1 mol dm~2 (KNOg) for the interaction of glycine (aminoethanoic acid), serine (2-amino-3-hydroxypro-
panoic acid), methionine (2-amino-4-(methylthio)butanoic acid), aspartic acid (aminobutanedioic acid),
glutamic acid (2-aminopropanedioic acid), and histidine (c-amino-1H-imidazole-4-propanoic acid) and
Cu(ll), Co(ll), Ni(Il), Mn(Il), and Zn(l1) with the biologically important secondary ligand zwitterionic
buffers S-hydroxy-4-morpholinepropanesulfonic acid (MOPSO), 4-morpholinepropanesulfonic acid (MOPS),
3-[bis(2-hydroxyethyl)amino]-2-hydroxy-1-propanesulfonic acid (DIPSO), and 3-[N-tris(hydroxymethyl)-
methyl)amino]-2-hydroxypropanesulfonic acid (TAPSO) in 1:1:1 and 1:1:2 ratios, and the formation of
various 1:1:1 ternary complexes and 1:1:2 quaternary complex species was inferred from the potentiometric
pH titration curves. Initial estimates of the formation constants of the resulting species and the acid
dissociation constants of the different amino acids and secondary ligands studied have been refined with
the SUPERQUAD computer program. The order of stability of the different normal ternary complexes in
the systems under investigation in terms of metal ion follows generally the trend Cu(ll) > Ni(ll) > Co(ll)

> zn(11) > Mn(11).

Introduction

For the standardization of pH and control of acidity in
the physiological region of pH 7 to 9, Good et al. (1966)
and Ferguson et al. (1980) have listed hydrogen buffers
which are N-substituted amino acids compatible with
common biological media. Organic buffers suitable for use
in biochemistry now include S-hydroxy-4-morpholinepro-
panesulfonic acid (MOPSO), 4-morpholinepropanesulfonic
acid (MOPS), 3-[bis(2-hydroxyethyl)amino]-2-hydroxy-1-
propanesulfonic acid (DIPSO) and 3-[N-tris(hydroxymeth-
yl)methyl)amino]-2-hydroxypropanesulfonic acid (TAPSO).

Zwitterionic N-substituted aminopropanesulfonic acids
show significant advantages over conventional buffers:
insignificant penetration through biological membranes,
maximum water solubility, and no enzyme substrate or
enzyme inhibition properties. Attention has been focused
on the zwitterionic buffer TAPSO, for the isoelectric
focusing method in analytical separation of protein over a
pH gradient of 4—6. It is well-known that ternary coordi-
nation plays an important role in biological processes.
Ternary complex formation occurs commonly in biological
fluids, as several potential ligands are likely to compete
for metal ions in vivo, that is, Cu(ll), Co(l1), Mn(ll), and
Zn(ll). Ternary complexes of transition divalent metal ions
with some amino acids and other secondary ligands have
been investigated (Shelke and Jahagirdar, 1979; Ghandour
et al., 1989; Mahmoud et al., 1989; Reddy et al., 1981;
Chandel and Gupta, 1984; De Robertis et al., 1995).

Metal ion complex formations are among the prominent
interactions in nature (Eichhorn, 1973; Sigel, 1973), and
the glycine, serine, methionine, aspartic acid, glutamic acid
and histidine residues are important and versatile binding
sites for protein while the zwitterionic buffers MOPSO,
MOPS, DIPSO, and TAPSO are equally important and
compatible with most media of physiological and biochemi-
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cal importance. For an improved understanding of the
driving forces leading to mixed ligand complexes in biologi-
cal systems, ternary complexes of the type M(II)-A-Z,
where M(11) = Cu(l1), Co(l1), Ni(Il), Mn(l1), or Zn (11), A=
glycine, serine, methionine, aspartic acid, glutamic acid,
or histidine, and Z = MOPSO, MOPS, DIPSO, or TAPSO,
have been investigated to determine the stability constants
of the complexes formed, as these systems mimic many
biological reactions (enzyme—M(lIl)—buffer interactions).

Experimental Section

Materials and Solutions. Reagent grade 5-hydroxy-4-
morpholinepropanesulfonic acid (MOPSO), 4-morpholinepro-
panesulfonic acid (MOPS), 3-[bis(2-hydroxyethyl)amino]-
2-hydroxy-1-propanesulfonic acid (DIPSO), and 3-[N-
tris(hydroxymethyl)methyl)amino]-2-hydroxypropane-
sulfonic acid (TAPSO) were from Sigma Chemical Co., St.
Louis, MO. Potentiometric pH titrations was used to
determine the molecular weight of MOPSO, MOPS, DIPSO,
and TAPSO to verify/determine the purity, especially for
acidic/basic contaminants; the purity averaged 99.5% for
the four compounds, with a standard deviation of 0.05%.

Glycine (aminoethanoic acid), serine (2-amino-3-hydroxy-
propanoic acid), glutamic acid (2-aminopropanedioic acid),
aspartic acid (aminobutanedioic acid), methionine (2-amino-
4-(methylthio)butanoic acid), and histidine (a-amino-1H-
imidazole-4-propanoic acid) were biochemical Merck prod-
ucts. All these substances were potentiometrically assayed
and proved sufficiently reliable so that further purification
was not needed. Copper nitrate (Cu(NO3),*6H,0), nickel
nitrate (Ni(NO3),:6H,0), cobalt nitrate (Co(NO3),:6H,0),
manganese nitrate (Mn(NO3),-6H,0), zinc nitrate (Zn-
(NO3),-6H,0), nitric acid, and KOH were from Merck p.a.
Stock solutions were prepared using distilled, CO,-free
water. The concentration of KOH used for the titrations
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was determined by titration with a standard solution of
potassium hydrogen phthalate (Merck AG). On the basis
of three replicate measurements, the concentrations were
found to be (0.0307 £ 0.00004) and (0.0256 + 0.00004) mol
dm3,

HNO3 solutions were prepared and standardized poten-
tiometrically with tris(hydroxymethyl)aminomethane. On
the basis of three replicate measurements, the concentra-
tion was found to be (0.0040 + 0.000005) mol dm~3. The
ESAB2M computer program (De Stefano et al., 1987) was
used for this refinement.

The concentrations of the metal ion stock solutions were
determined by titration with ethylenediaminetetraacetic
acid (EDTA). The concentration of the metal ions was found
to be (0.0010 + 0.000004) mol dm3,

Apparatus. Potentiometric pH measurements were
performed on the solutions in a double-walled glass vessel
at (25 £+ 0.1) °C with a commercial Fisher combined elec-
trode, and a magnetic stirrer was used. A Fisher Accumet
pH/ion meter Model 825 MP was used. Purified nitrogen
was bubbled through the solutions during titrations.

Procedure. The test solution was titrated with standard
CO,-free KOH. The electrodes were calibrated, in both the
acidic and alkaline regions, by titrating 0.01 mol dm=3
nitric acid with standard potassium hydroxide under the
same experimental conditions. The concentration of free
hydrogen ion Cy+ at each point of the titration is related
to the measured emf E of the cell by the Nernst equation

E=E°+QlogC,. 1)

where E° is a constant which includes the standard
potential of the glass electrode and Q is the slope of the
glass electrode response. The value of E° for the electrode
was determined from a Gran plot derived from a separate
titration of nitric acid with standard KOH solution under
the same temperature and medium conditions as those for
the test solution titration. The results so obtained were
analyzed by the nonlinear least-squares computer program
ESAB2M (De Stefano et al., 1987) to refine E° and the
autoprotolysis constant of water K. During these calcula-
tions, Ky was refined until the best value for Q was
obtained. The results obtained indicated the reversible
Nernstian response of the glass electrode used. The solu-
tions titrated can be presented according to the following
scheme: HNOjz; HNO3; + amino acid (a); HNO3z; + amino
acid + M(I1) (b); HNO3 + zwitterionic buffer ligand (c);
HNO;3; + zwitterionic buffer ligand + M(I1) (d); HNO3; +
amino acid + zwitterionic buffer ligand + M(II) (e). A
constant ionic strength was obtained with 0.1 mol dm—3
KNOg, and the total volume was kept constant at 50 cm8.

Results and Discussion

Formation constants for the normal ternary complexes
and protonation constants for primary and secondary
ligands were refined with the SUPERQUAD computer
program (Gans et al., 1985). The same computer program
has been used by the author in previous publications (Azab
et al., 1993, 1994, 1995). The constants were refined by
minimizing U, defined by

U= Zwi(Eobs - Ecalc)2 (2

where Eqps and Egqc refer to the measured potential and
that calculated from eq 1. The weighting factor W; is
defined as the reciprocal of the estimated variance of the
measurement.

W, = 1/6° = 1[0 + (0EIOV)?6,2] ©)

where og and oy are the estimated variances of the
potential and volume readings, respectively, The quality
of the fit was judged by the values of the sample standard
deviation S and the goodness of fit X2 (Pearson’s test). At
og = 0.1 mV (0.001 pH error) and oy = 0.005 mL, the values
of S in different sets of titrations were between 1.0 and
1.8 and X2 was between 12.0 and 13.0. The scatter of
residuals (Eqps — Ecalc) versus pH was reasonably random,
without any significant systematic trends, thus indicating
a good fit of the experimental data.

At the experimental pH values used in the calculation
in this work, the interfering effects of hydroxy complexes
are negligible. Thus, the secondary ligand Z combines with
the binary 1:1 M(I1)—(A) complexes [M(I1)—(glycine), M(I1)—
(serine), M(11)—(methionine), M(Il)—(aspartic acid), M(I11)—
(glutamic acid) and M(11)—(histidine)] in a manner similar
to that for its interaction with aquated metal ions in
solutions. Thus, the initial estimates of the stability
constants of the normal ternary complexes formed in
solution have been determined using the Irving and Ros-
sotti formula (Irving and Rossotti, 1953, 1954).

The acidity constants determined at 25 °C of MOPSO
(pPKaz = 6.89 + 0.02), MOPS (pKa, = 7.14 £ 0.04), DIPSO
(pPKaz = 7.60 £+ 0.03), and TAPSO (pKa, = 7.61 £+ 0.02) are
in good agreement with those found in the literature
(Sankar and Bates, 1978; Ferguson et al. 1980; Roy et al.,
1997). The acid formation constant values for glycine (pKaz
= 9.80 + 0.03), serine (pKs2 = 9.20 + 0.03), methionine
(pKaz = 9.16 + 0.04), aspartic acid (pKa, = 3.91 £ 0.03,
pKaz = 9.74 £ 0.04), glutamic acid (pKa, = 3.98 £+ 0.02,
pKaz = 9.68 £ 0.03), and histidine (pKa, = 5.96 + 0.02, pKa3
= 9.20 £+ 0.02) and the stability constants of their Cu(ll),
Co(11), Ni(Il), Mn(Il), or Zn(I1) complexes were determined
from the titration curves, and the results agree fairly well
with those reported in the literature (Perrin and Dempsey,
1979; Martin, 1979). The plus/minus values refer to sta-
tistically determined uncertainities at small 95% confidence
intervals of the reported values.

Initial estimates of the stability constants of different
monoprotonated mixed ligand and quaternary complexes
formed in solution have been refined with the SUPER
QUAD computer program (Gans et al., 1985). Initial
estimates of the stability constants of the quaternary
complexes have been calculated by the method used by
Sinha et al. (1989).

The zwitterionic structures of the ampholytes MOPSO,
MOPS, DIPSO, and TAPSO are

/ \ + -
(\_/II\I - C,H4 CHOHSO;

H
(MOPSO)

Q /‘KIH- CH, CH,CH,SOs

(MOPS)
HOCHZ - CHz\ + -
NH - CH, QHCHZSO3
HOCH,;, - CH, OH

(DIPSO)
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HOH,C

N _
HOH,C C-NH,-CH,CHOHCH,SO;

HOH,C
(TAPSO)

It is evident that the calculated pK's of MOPSO, MOPS,
DIPSO, and TAPSO are lower than that of the parent
compound Taurine (—03S(H,C),NHz"), pK, = 9.06. This
enhancement of acid strength of the NH* group in MOPSO,
MOPS, DIPSO, and TAPSO is probably due to the steric
and inductive effects of the oxygen atoms. The substitution
of hydroxyethyl, hydroxymethyl, morpholine, or piperazine
groups on the nitrogen atom in Taurine usually lowers the
value of pK; for the isoelectric dissociation processes.

During the titrations of different M(I1)—(A)—(2) systems
it was observed that different 1:1 binary M(l1)—amino acid
complexes begin to form in the pH range 4.0—6.5 for
monocarboxylic amino acids and in the pH range 3.0—4.0
for dicarboxylic amino acids. With respect to the titration
curves of the M(Il) + Z binary complex solutions, one may
deduce that these complexes begin to form at pH > 6.06
for Cu(ll) + MOPSO, pH > 5.02 for Cu(ll) + TAPSO, pH
> 5.41 for Cu(ll) + DIPSO, and pH > 3.29 for Co(ll) +
DIPSO. Generally, for all M(Il) + Z complexes studied,
precipitation occurred at pH > 10.5. In all cases no
calculations have been performed beyond the precipitation
point; hence, the hydroxy species likely to be formed after
this point could not be studied.

For the titration curves of the ternary systems studied
(M(I1)-A—2), one observes that b and e are well separated
at pH > 8.73 for Cu(ll)—glycine—MOPSO, pH > 3.40 for
Cu(ll)—aspartic acid—MOPSO, pH > 8.30 for Cu(ll)—
methionine—TAPSO, pH > 6.40 for Zn(l1)—methionine—
MOPSO, pH > 7.25 for Mn(ll)—aspartic acid—TAPSO, pH
> 7.40 for Cu(ll)—histidine—TAPSO, pH > 7.05 for
Cu(11)—glycine—DIPSO, and pH > 8.20 for Co(l1)—glycine—
DIPSO, respectively. This behavior reveals that in these
pH ranges coordination of the secondary ligand, the zwit-
terionic buffer, and M(l1) + A starts.

Examination of the different formation constant values
listed in Tables 1-5 clearly reveals that the order of the
overall stability of the different normal ternary complexes
in the systems under investigation in terms of metal ions
follows generally the trend Cu(ll) > Ni(ll) > Co(ll) >
Zn(11) > Mn(I1) whereas the log Suaiyayz values of M(I1)—
serine—MOPS follow the order Cu(ll) > Ni(ll) > zZn(ll) >
Mn(11) > Co(ll).

To the authors’ knowledge, no data for the ternary
complexes of the newer buffers MOPSO, MOPS, DIPSO,
or TAPSO with glycine, serine, methionine, aspartic acid,
glutamic acid, or histidine are available in the literature
for comparison.

The observed weaker binding of the TAPSO-ate anion
by the binary M(Il)-amino acid complexes as compared
with that of the MOPSO-ate, MOPS-ate, and DIPSO-ate
anions may be attributed to the poorer structural matching
between the TAPSO-ate secondary ligand and the M(I11)—
amino acid complex.

A comparison of the overall stability constants of the
M(I1)—A—Z ternary systems indicates the higher stabilities
of the ternary complexes containing dicarboxylic amino acid
(aspartic and glutamic). This behavior can be mainly
ascribed to the fact that the dicarboxylic amino acids are
much more prone to complex formation than the monocar-
boxylic amino acids (glycine, serine, or methionine). This

Table 1. Formation Constants for the Binary Cu(ll) + Amino Acid (A) or Zwitterionic Buffer (Z) Ligand Complexes Together with the Corresponding Mixed Ligand

Complexes Cu(ll)-Amino Acid—Zwitterionic Buffer Ligand at 25.0 4+ 0.1 °C and | = 0.1 mol-dm—3 KNO3z2

cu(Inhistidine

log KCu(ihistidine(2)

Cu(1)glutamic

IOg KCu(ll)glutamic(Z)

Cu(ll)aspartic

IOg KCu(II)aspartic(Z)

Cu(ll)methionine

IOg KCu(ll)methionine(z)

Cu(ll)serine

IOg KCu(ll)serine(Z)

Cu(1l)glycine

IOg KCu(ll)glycine(z)

or

cu(ll
log lgcﬁgllghistidine(z)

or

or

or
cu(ll)

or

cu(ll)

log ﬂCu(Il)serine(Z)

or
cu(ll)

log ﬁCu(Il)glycine(Z)

cu(ll)

log ﬂCU(u)glutamic(z)
3.78 £0.02,11.73 £ 0.03 3.63 4+ 0.02, 14.13 4+ 0.04

Cu(ll)aspartic (Z)

log f3
4.07 +0.01, 12.57 + 0.03

cu(ll)

log ﬁCu(n)methionine(z)

cu(ll
log Kcﬁﬁug(z)

ligand
MOPSO

MOPS

3.80 £ 0.03, 14.30 £ 0.04
3.53 +0.02, 14.03 + 0.04

3.54 +£0.04, 11.49 + 0.02
3.44 £0.02,11.94 £ 0.03 3.47 +0.02,11.42 +0.03 3.66 + 0.03,14.16 + 0.03

3.86 £0.03,12.36 £ 0.04 4.26 +0.02, 12.21 4+ 0.03

3.47 £ 0.04, 11.97 + 0.04

3.54 +£0.02,10.77 £ 0.04 3.71 +0.03, 11.97 + 0.03
3.46 £ 0.03, 10.69 £ 0.04 3.41 +0.02, 11.67 + 0.04

3.69 +0.03, 11.86 + 0.03  3.68 +0.03, 10.91 + 0.04 3.42 + 0.04, 11.68 + 0.03

3.81+0.04 3.78+0.02,11.95+0.03 3.98+0.02,11.21+0.04 3.80+0.02,12.06 + 0.03
3.66 +0.02, 11.83 + 0.03

4.00 + 0.04

4.71 + 0.02
474 +£0.02 3.50+0.02,11.67 + 0.04

DIPSO
TAPSO

—AGP/kJ-mol—1

MOPS
20.88
20.19

cu(ll)

log Bcuinm@,

MOPSO

7.50 £ 0.04
7.52 £0.05
7.62 £ 0.03
7.67 £0.03
7.60 £ 0.02
8.10 +£ 0.03

Z =TAPSO
19.97

Z =DIPSO
21.05
20.99

7=

Z = MOPSO
21.56
22.70
21.68
23.22

Z = MOPS
6.35 + 0.03
6.40 + 0.03
6.46 + 0.02
6.61 + 0.03
6.56 + 0.03
6.48 £+ 0.02

7=

cu(ll
log Kcﬂ&S(A)

ligand

19.74
19.45
19.62
19.79
20.88

19.51
19.79
20.19
20.14

21.16
22.02
24.30
21.68

21.56
20.71

8.17 £ 0.03
7.23 £0.03
8.26 + 0.04
8.50 £ 0.03
7.95 £ 0.03
10.50 + 0.04

glutamic acid

aspartic acid
histidine

methionine

glycine
serine
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+ uncertainties refer to 3 times the standard deviation (3s). ® AG, free energy of formation of the

Cu(IN(A)2)
Cu(IN(A)@),"

Cu(1)(A
log KcﬂgugEA;(Z) + log K

cu(ll —
log ﬁcﬂgug(A)(Z)z -

Cu(l |)(A§(Z)'

VA

ui

cu(In(a)
¢

Cu(ll
log Kcﬂ§|.§<A) + log K¢y

a| cu(ll)
0g ﬁCu(II)(A)(Z)
ternary complex: AG = —2.303RT log K
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Table 6. A log Ky Values for the 1:1:1 M(I1)-Amino Acid
(A)—Zwitterionic Buffer (Z) Ternary Complexes, As
Determined by Potentiometric pH Titrations at 25.0 + 0.1
°C and I = 0.1 mol-dm~3 KNO3z2

A log K
M(I)(A)Z)  Cu(ll)  Co(l)  Ni(l)  Mn(1)  zZn(Il)
M(I1)—Glycine—2Z

MOPSO —0.03 +0.29
MOPS -0.34 +0.17
DIPSO —1.02 —0.20 —0.24
TAPSO —1.24
M(11)—Serine—Z
MOPSO +0.17 +0.42
MOPS —0.46 —0.01 —0.04 -0.11
DIPSO —1.03
TAPSO —1.28 —0.03
M(11)—Methionine—Z

MOPSO —0.01 +0.35
MOPS —0.29
DIPSO -1.29
TAPSO —1.33

M(Il)—Aspartic—Z
MOPSO +0.26 +0.42
MOPS -0.14 +0.27 +0.22 +0.24 +0.07
DIPSO -1.24
TAPSO —1.30

M(Il)—Glutamic—Z
MOPSO —0.03 +0.40
MOPS +0.26 +0.24  +0.48 +0.06
DIPSO -1.17 —0.17 —0.22
TAPSO —1.27

M(Il)—Histidine—Z
MOPSO —0.18 +0.33
MOPS —0.20 +0.27 +0.13 —0.05 +0.52
DIPSO —1.18
TAPSO —1.08 +0.24  +0.20 +0.07 +0.45

— M(IT)(A M1
aAlog K = log KM%II;EA;(Z) — log KM&S(Z)-

is due to the effective high basicity of the dicarboxylic
amino acids as well as their tendency to act as ONO
tridentate. Furthermore, with respect to the dicarboxylic
amino acids, it is evident that the stability of the binary
or mixed ligand complexes containing an aspartic acid
residue is higher than that of the corresponding one
containing glutamic acid. This behavior can be interpreted
in terms of the effective basicity of the free conjugate base
of the aspartic acid.

The A log K values are positive for some of the investi-
gated ternary complexes (Table 6). The higher stability
constants of ternary complexes compared with those of
binary systems may be attributed to the interligand
interactions or some cooperativity between the coordinated
ligands, possibly H-bond formation.

On the basis of a mathematical treatment and SUPER-
QUAD calculations (Gans et al., 1985) of the titration
curves of the systems M(11)-A—MOPSO, it was concluded
that there is no formation of protonated ternary complexes
in these solutions. This may be explained on the basis of
the higher acidity of MOPSO compared to MOPS, DIPSO,
or TAPSO, which makes the protonated 1:1:1 complexes
of MOPSO with Cu(ll), Co(Il), Ni(l1), Mn(Il), or Zn(ll) ions
and the amino acids (glycine, serine, methionine, aspartic
acid, glutamic acid or histidine), strong acids that dissociate
readily to the normal 1:1:1 complexes in solution.

It seems evident from the values of the overall formation
constants reported in Tables 1-5 that the different chela-
tion modes of the above-mentioned amino acids during the
formation of the ternary complexes under investigation

overestimate the role of basicity in determining the overall
stability of these mixed ligand complexes.

The observed higher stability constants for the ternary
complexes containing histidine relative to those of other
ternary systems under investigation may be attributed
quite possibly to the fact that under this condition the
histidine anion bound to Cu(ll), Co(Il), Ni(ll), Mn(Il), or
Zn(ll) ions as terdentate ligand to form the primary
complexes which then interacted simultaneously with the
zwitterionic buffer ligands to form the ternary complexes.
As is shown in Tables 1-5, the overall formation constants
of the quaternary complexes with MOPSO as secondary
ligand are higher than those for complexes containing
MOPS. The quaternary complexes studied, especially those
of Cu(ll) and Ni(ll), may be considered as relatively simple
models from which information may be gained about the
properties of amino acids and their different structural
chemistries regarding the strength of their interactions
with the biologically important zwitterionic buffer ligands
(MOPSO, MOPS, DIPSO, and TAPSO), and even insight
into the factors which influence the strength is thus
becoming available, as these systems may mimic the low
molecular weight metallopeptides Cu(l11)-GGH and Ni(ll)—
GGH.

Our investigation confirmed the formation of mixed
ligand complexes of the type M(Il)-A—Z [where A =
glycine, serine, methionine, glutamic acid, aspartic acid,
and histidine; Z = MOPSO, MOPS, DIPSO, and TAPSO;
M(I1) = Cu(ll), Co(l1), Ni(11), Mn(Il), and Zn(I1)] in solution;
hence, great reservations should be exercised in employing
these biologically important zwitterionic buffers in systems
containing the mentioned metal ions or amino acids.
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